Unraveling Complex Connections between Genomic Variation and Disease Trait Manifestation

Jennifer E Posey MD, PhD

Molecular & Human Genetics Baylor College of Medicine

@poseypod

Jennifer.Posey@bcm.edu

ASHG Annual Meeting

02 November 2023

Functional & disease annotation of human genome

More work is needed to be done to understand:

- The biological functions and disease relationships of all 20,000 protein coding human genes
- The influence of different variant types on gene and protein function, and their ultimate impact on health
- The impact of combinations of pathogenic variants in more than one gene/locus

Dual molecular diagnoses

Two genes Two disease traits

Independent molecular diagnoses

- Variants in <u>Gene A</u> + <u>Gene B</u>
- Resulting in <u>blended phenotypes</u>

Accurate diagnosis is critical

- Informs surveillance and management
- Informs recurrence risk estimates for family
- Diagnostic odyssey may not end with first molecular diagnosis

Frequency of multiple molecular diagnoses

- Analysis of 7374 sequential diagnostic laboratory referrals for ES
- Molecular diagnosis in 28.2% (2076/7374)
- Two or more diagnoses related to phenotype in 4.9% (101/2076) of diagnosed cases

Posey JE, Harel T, et al. N Engl J Med (2017) 376:21-31.

AOH-mediated recessive disease burden

Pehlivan D, et al. (2019) Am J Hum Genet 105:132-150.

AOH-mediated recessive disease burden

AOH-mediated recessive disease burden

Pehlivan D, et al. (2019) Am J Hum Genet 105:132-150.

Dual molecular diagnoses

Distinct Overlapping

Computational dissection of blended phenotypes

Posey JE, Harel T, *et al.* N Engl J Med (2017) *376:*21-31.

Computational dissection of blended phenotypes

Posey JE, Harel T, *et al. N Engl J Med* (2017) *376:*21-31.

Computational modeling of 2 extreme classifications of blended phenotypes

- Human phenotype ontology (HPO) terms
- Phenotype similarity score

Can we take advantage of ontological structure of HPO to perform pairwise comparisons of patient phenotypes?

What can we learn if we apply this approach to a single, genetically heterogeneous condition?

Patient 1Patient 2Condition ACondition A

Robinow syndrome

Skeletal dysplasia with characteristic clinical findings

Genetic heterogeneity

Robinow syndrome

- 68 subjects
- Pairwise comparison of phenotypes
- Despite genetic heterogeneity, cluster analysis by phenotype yielded genespecific clusters

Robinow syndrome

- 68 subjects
- Pairwise comparison of phenotypes
- Despite genetic heterogeneity, cluster analysis by phenotype yielded genespecific clusters

Robinow syndrome

- 68 subjects
- Pairwise comparison of phenotypes
- Despite genetic heterogeneity, cluster analysis by phenotype yielded genespecific clusters

Robinow syndrome

- 68 subjects
- Pairwise comparison of phenotypes
- Despite genetic heterogeneity, cluster analysis by phenotype yielded genespecific clusters

NAV2

Herman I, Jolly A, et al. Am J Med Genet A (2022) 188:735-750.

(OMIM HPO + HPO2GO)

Mayer-Rokitansky-Küster-Houser syndrome (MRKHS)

Congenital reproductive disorder in women

- Absent or underdeveloped uterus and vagina
- Ascertainment often in teens due to amenorrhea
- Type I: isolated
- Type II: syndromic

American/European cohort:

- 148 affected individuals
- ~ 55% type MRKH type I

Han Chinese cohort:

- 442 affected individuals
- ~ 75% MRKH type II

Mayer-Rokitansky-Küster-Houser syndrome (MRKHS)

Congenital reproductive disorder in women

- Absent or underdeveloped uterus and vagina
- Ascertainment often in teens due to amenorrhea
- Type I: isolated
- Type II: syndromic

GREB1L: established renal hypodysplasia/aplasia disease gene

Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations

Simone Sanna-Cherchi,^{1,27,*} Kamal Khan,² Rik Westland,^{1,3} Priya Krithivasan,¹ Lorraine Fievet,² Hila Milo Rasouly,¹ Iuliana Ionita-Laza,⁴ Valentina P. Capone,¹ David A. Fasel,¹ Krzysztof Kiryluk,¹ Sitharthan Kamalakaran,⁵ Monica Bodria,⁶ Edgar A. Otto,⁷ Matthew G. Sampson,⁸ Christopher E. Gillies,⁸ Virginia Vega-Warner,⁸ Katarina Vukojevic,⁹ Igor Pediaditakis,² Gabriel S. Makar,¹ Adele Mitrotti,¹ Miguel Verbitsky,¹ Jeremiah Martino,¹ Qingxue Liu,¹ Young-Ji Na,¹ Vinicio Goj,¹⁰ Gianluigi Ardissino,¹¹ Maddalena Gigante,¹² Loreto Gesualdo,¹³ Magdalena Janezcko,¹⁴ Marcin Zaniew,¹⁵ Cathy Lee Mendelsohn,¹⁶ Shirlee Shril,¹⁷ Friedhelm Hildebrandt,¹⁷ Joanna A.E. van Wijk,³ Adela Arapovic,¹⁸ Marijan Saraga,^{18,19} Landino Allegri,²⁰ Claudia Izzi,^{21,22} Francesco Scolari,²¹ Velibor Tasic,²³ Gian Marco Ghiggeri,⁶ Anna Latos-Bielenska,²⁴ Anna Materna-Kiryluk,²⁴ Shrikant Mane,²⁵ David B. Goldstein,⁵ Richard P. Lifton,^{25,26} Nicholas Katsanis,^{2,27} Erica E. Davis,^{2,27,*} and Ali G. Gharavi^{1,27}

GREB1L: established renal hypodysplasia/aplasia disease gene

Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations

Simone Sanna-Cherchi,^{1,27,*} Kamal Khan,² Rik Westland,^{1,3} Priva Krithivasan,¹ Lorraine Fievet,² Hila Milo Rasouly,¹ REPOR⁻ Sitharthan Kamalaka Christopher E. Gillie Gabriel S. Makar,¹ A Mutations in *GREB1L* Cause Bilateral Kidney Vinicio Goj,¹⁰ Gianl Marcin Zaniew,¹⁵ Ca Agenesis in Humans and Mice Joanna A.E. van Wij Lara De Tomasi,^{1,2,3} Pierre David,⁴ Camille Humbert,^{1,2} Flora Silbermann,^{1,2} Christelle Arrondel,^{1,2} Francesco Scolari,²¹ Anna Materna-Kirylu Frédéric Tores,⁵ Stéphane Fouquet,⁶ Audrey Desgrange,^{2,7} Olivier Niel,⁸ Christine Bole-Feysot,⁹ Nicholas Katsanis,^{2,2} Patrick Nitschké,⁵ Joëlle Roume,¹⁰ Marie-Pierre Cordier,¹¹ Christine Pietrement,¹² Bertrand Isidor,¹³ Philippe Khau Van Kien,¹⁴ Marie Gonzales,¹⁵ Marie-Hélène Saint-Frison,¹⁶ Jelena Martinovic,¹⁷ Robert Novo,¹⁸ Juliette Piard,¹⁹ Christelle Cabrol,¹⁹ Ishwar C. Verma,²⁰ Ratna Puri,²⁰ Hubert Journel,²¹ Jacqueline Aziza,²² Laurent Gavard,²³ Marie-Hélène Said-Menthon,²⁴ Laurence Heidet,^{25,26} Sophie Saunier,^{1,2} and Cécile Jeanpierre^{1,2,*}

GREB1L: established renal hypodysplasia/aplasia disease gene

Exome-wide Association Study Identified GREB1L Mutations in Congenital Kidne	es ey Malformations
Simone Sanna-Cherchi, ^{1,27,*} Kamal Khan, ² Rik Westland Hila Milo Rasouly, ¹ Lating Logita Logita Valuation D. Co Sitharthan Kamalaka Christopher E. Gillie	I, ^{1,3} Priya Krithivasan, ¹ Lorraine Fievet, ² REPORT
Gabriel S. Makar, ¹ A Vinicio Goj, ¹⁰ Gianh Marcin Zaniew, ¹⁵ Ca Joanna A.E. van Wij Francesco Scolari, ²¹ Anna Materna-Kiryh Nicholas Katsanis, ^{2,2} Mutations in <i>GREB1L C</i> Agenesis in Humans ar Lara De Tomasi, ^{1,2,3} Pierre David Frédéric Tores, ⁵ Stéphane Fouque Patrick Nitschké, ⁵ Joëlle Roume, ¹ Philippe Khau Van Kien, ¹⁴ Marie Robert Novo, ¹⁸ Juliette Piard, ¹⁹ (Jacqueline Aziza, ²² Laurent Gava Sophie Saunier, ^{1,2} and Cécile Jea	ause Bilateral Kidney nd Mice
	A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel <u>Renal Agenesis</u> Gene
	in Humans Patrick D. Brophy,* ^{,1} Maria Rasmussen, ^{†,1} Mrutyunjaya Parida, ^{‡,1} Greg Bonde, [§] Benjamin W. Darbro, [*]
	Xiaojing Hong, [‡] Jason C. Clarke,* Kevin A. Peterson,** James Denegre,** Michael Schneider, [†] Caroline R. Sussman, ^{‡‡} Lone Sunde, [†] Dorte L. Lildballe, [†] Jens Michael Hertz, ^{§§} Robert A. Cornell, Stephen A. Murray,** and J. Robert Manak* ^{,‡,}

GREB1L genotype-phenotype analysis

Jolly A, et al. HGG Adv (2023) 4:100188.

GREB1L associated with isolated & syndromic MRKHs (phenotypic expansion)

Jolly A, et al. HGG Adv (2023) 4:100188.

Overall Conclusions

Deep phenotyping, and quantitative phenotypic analysis, can uncover novel gene- and variant-disease relationships

Structured phenotyping can inform individual gene/variant contributions to blended phenotypes resulting from multilocus pathogenic variation

Careful phenotypic assessment can uncover previously unrecognized phenotypic expansion at a locus

THANK YOU

Baylor College of Medicine Genomics Research to Elucidate the Genetics of Rare disease

Posey Lab

Scott Barish Shaghayegh Beheshti Ray Belanger Deloge Brandon Garcia Nikhita Gogate Yidan Li Chloe Munderloh Andy Rivera

BAYLOR GENETICS

BCM-GREGoR Team

James R. Lupski **Richard A. Gibbs** Scott Barish Shaghayegh Beheshti **Ray Belanger Deloge Daniel** Calame Ivan Chinn Zeynep Coban Akdemir Zain Dardas Moez Dawood Haowei Du Vince Ruizhi Duan Jawid Fatih **Brandon Garcia** Nikhita Gogate Chris Grochowski Isabella Herman Shalini Jhangiani Angad Jolly

Parneet Kaur **Richard Lewis** Yidan Li Pengfei Liu Cliff Lun Medhat Mahmoud Dana Marafi Tadahiro Mitani Shaine Morris Chloe Munderloh Donna Muzny Davut Pehlivan Archana Rai Andy Rivera Ahmed Saad Fritz Sedlazeck **Reid Sutton** Bo Yuan

FUNDING Caroline Wiess Law Scholar

NHGRI/NHLBI UM1 HG006542 NHGRI U01 HG011758