Expanding our understanding of human genetic variation through long-read sequencing of 1000 **Genomes Project samples**

Danny E. Miller, MD, PhD

Assistant Professor Department of Pediatrics, Division of Genetic Medicine Department of Laboratory Medicine & Pathology

The University of Washington and Seattle Children's Hospital

ASHG November 2, 2023

dm1@uw.edu

http://millerlaboratory.com | 😏 @danrdanny

Clinical genetic testing often occurs in a stepwise fashion, involving multiple tests and clinic visits

Frésard et al. 2018 and Clark et al. 2018; Gibson et al., Submitted

New technologies, such as long-read sequencing will increase the diagnostic rate

Long-read sequencing as a single test

Frésard et al. 2018 and Clark et al. 2018; Gibson et al., Submitted

A traditional genetic workup is diagnostic in less than 50% of cases

Incomplete gene-phenotype relationships

• We do not know the function of all genes

Variants that are difficult to detect or interpret

- Many genes are difficult to sequence
- Structural variants can be difficult to identify
- Predicting the impact of a variant is difficult

Short-read sequencing detects less than half the SVs seen by long-read sequencing

Adapted from Zhao et al. 2020

Long-read sequencing technologies

LRS provides detailed information about SVs

LaCroix et al. 2019, Miller et al. 2021

LRS provides detailed information about SVs, including methylation data

LaCroix et al. 2019, Miller et al. 2021

LRS provides detailed information about SVs, including methylation data

LaCroix et al. 2019, Miller et al. 2021

A traditional genetic workup is diagnostic in less than 50% of cases

Incomplete gene-phenotype relationships

• We do not know the function of all genes

Variants that are difficult to detect or interpret

- Many genes are difficult to sequence
- Structural variants can be difficult to identify
- Predicting the impact of a variant is difficult

A traditional genetic workup is diagnostic in less than 50% of cases

Incomplete gene-phenotype relationships

• We do not know the function of all genes

Variants that are difficult to detect or interpret

- Many genes are difficult to sequence
- Structural variants can be difficult to identify
- Predicting the impact of a variant is difficult

LRS can be used to identify variants in complex regions of the genome

- Newborn with respiratory failure at birth requiring ECMO
- Duo exome sequencing revealed a likely pathogenic 2-bp deletion in HYDIN

Unpublished data

HYDIN is a 400-kb gene containing a 380-kb segmental duplication

Unpublished data

Short reads do not align well within HYDIN

Unpublished data

LRS gives even coverage across HYDIN and identifies SNVs difficult to detect with short reads

Unpublished data; R9.4 flow cell, superior model, all variants shown

A traditional genetic workup is diagnostic in less than 50% of cases

Incomplete gene-phenotype relationships

• We do not know the function of all genes

Variants that are difficult to detect or interpret

- Many genes are difficult to sequence
- Structural variants can be difficult to identify
- Predicting the impact of a variant is difficult

LRS can identify variants missed by prior clinical testing — these are often SVs

Heterozygous for known maternally inherited stop in FGA (fibrinogen alpha chain)

Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

LRS can identify variants missed by prior clinical testing — these are often SVs

Heterozygous for known maternally inherited stop in FGA (fibrinogen alpha chain)

Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

LRS can detect variants in regions of the genome difficult to analyze with short reads

Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

LRS can detect variants in regions of the genome difficult to analyze with short reads

An individual unsolved after clinical testing

- 8-year-old male with suspected glycogen storage disease
 - Panel identified a single pathogenic variant in AGL, but no 2nd variant
- Family returns for re-evaluation and additional testing
 - SNP array: negative
 - Exon-level array: negative
- Research-based short-read WGS
 - SV identified in AGL, thought to be a translocation
 - Clinical optical genome mapping: negative
- Research long-read sequencing

An individual unsolved after clinical testing

Existing databases cannot be used to determine the allele frequency of these variants

The 1000 Genomes Project characterized patterns of human genetic variation

ARTIC	CLE	OPEN doi:10.1038/nature/1539	↓ 13		
A globa genetic	l reference variation	for human			_
The 1000 Geno applying whole completion of th tion of low-cor characterized a polymorphisms onto high-qual	ARTIC	LE	doi	:10.1038/nature09534	
ancestries. We d common diseas The 1000 Genomes distribution of comm processes that shape disease biology ²² . Th human aentic varia	A map of populatio	f human genome varia on-scale sequencing Consortiun*	tion	from	
cataloguing of varia neutral variants ⁴⁵ . In this final phase in Africa (AFR), Ea and the Americas (population descript	The 1000 Genomes for investigating th project, designed t platforms. We une populations; high- ied/bid/unle form c	ARTICLE			OPEN doi:10.1038/nature15394
sequenced using both and targeted exome individuals and ava spring) were genotyp vided a cost-effectiv individual genotypes Data set overvie In contrast to earlis beyond bi-allelis: ew diverse set to struct	approximately 15 i structural variants, majority of commo data set. On averag genes and 50 to 100 to inform associatic substitution mutati signatures of natur due to selection at 1	An integrated map of in 2,504 human generation of the state of the sta	f str ome	uctural va s	ariation
collection, data gene Extended Data Fig sequence analysis to ing classifiers to sep positives, balancing lotypes started with a array genotypes for first degree relatives bi- allelic variants th types; and conclude tural variants onto Overall, we discover (Supplementary Ta wilested & nonline	Understanding the relat one of the central goals in genome sequence' prov genetics, but systematics knowledge of DNA sequ- alled frequencies and ty has already been made. (dbSNP 129) contained polymorphisms (SNPa) (indeds) ²⁴ . Databases of indexed the locations of HapMap Project catalogs patterns between nearby	Structural variants are implicated in numerous diseases and genomes. Here we describe an integrated set of eight structure variants, which we constructed using short -rated DDA seq population stratification and describe naturally occurring in of a variety of human genes. We demonstrate that stru- uncover appresible levels of structural variant complexity of reposited gerarangement and complex structural variant individual materional events. Our catalogue will enhance fe import and disease associations.	I make up th tral variant cl uencing dats numerous g homozygous actural varia ht for expree y at differen ts with mult ature studies	e majority of varying nuclee lasses comprising both balan and statistically phased or gene-intersecting structura gene knockouts that sugge nits are enriched on happ ssion quantitative trait lot t scales, including genic lo iple breakpoints likely to h i nto structural variant den	otides among human need and unbalanced ato haplotype blocks I variants exhibiting st the dispensability otypes identified by ci. Additionally, we ci subject to clusters have formed through aography, functional
ranadito 90 MIIIBO Caldogre (vriston Tuss destigant and the 68 NATURE YO	discipilitizina (LD), are Tiber resources have generation of genome- ber of the second of the second beam of the second of the second water of the second of the cated with disease succ wide categories of body categories are second of the Dopite these success understanding of the g Once a region has been understanding of the g	Storticular straints (SVA), according deteriors, how paints, applications, applications, applications, and the straints, and the straints of the straints, and there is a straints, and the stra	algorithms- and genoty (Extended I orthogona) and charact false discow additional 6 parefi to the paper ¹⁴ . As paper ²⁵ . As paper ²⁵ . Sv callests to c biallelic copy- callest to c biallelic copy- drial insert (MEIs, inch SVA (SINE SV non- ~98% for t duplication	-BWA ¹⁷ and mrsPAST ⁴⁷ —and ping using an ensemble of 1 separate hand platforms for SV retratation (Supplementary Table separate (Table Jose et al. SV das atiated through long read sequen- tion (Supplementary Table SV set released with the 1000 SV set released with the 1000 set of the set of the set of the set set of the set of	performed SV discovery time different algorithms took). We applied several et assessment, refinement 20 and to calculate the 20 and to calculate the comparability of the several transmission of the several several transmission of the several several determines and the several

LRS of 1000 Genomes Project samples to characterize previously inaccessible patterns of human variation

LRS of 1000 Genomes Project samples to characterize previously inaccessible patterns of human variation

ARTI	CLE	OPEN 60i10.1038/nature1559	4
A globa genetic	ll reference variation	for human	
The 1000 Geno applying whole completion of I tion of low-cor characterized a polymorphisms onto high-qual ancestrise. We common diseas	ARTIC A map of populatic	LE f human genome varia	461303388/nature99534 tion from
The food Centrals distribution of comm processes that shape disease biology ^{1,2} . Th human genetic varia genetic studies, by cataloguing of varia neutral variants ^{4,7} . In this final phase	The 1000 Genomes Project		
and the Americas (population descript sequenced using both and targeted exome individuals and ava spring) were genotyp vided a cost-effective individual genotype Data set overvie In contrast to earli- beyond bi-allelic ev diverse set of struct	paltorms. We un populations, high- individuals from s approximately 15 : structural variants, majority of commo data set. On averag genes and 50 to 100 to inform associatic substitution mutati signatures of natur due to selection at 1	An integrated map o in 2,504 human gene A list of authors and their affiliations appears at the end of ther	f structural variation omes
collection, data gena Extended Data Fig. sequence analysis to jogitives, balancing lotypes started with a array genotypes for first degree relatives bi-alleci variants th types; and conclude tural variants onto Overall, we discover (Supplementary Ta validated 80 million	Understanding the relation of the central goals in one of the central goals in generics, but systematic knowledge of DNA sequi- able frequencies and ty has already been made. (dbSNP 129) contained polymorphisms (SNPa) (inded) ¹² . Databases of indexed the locations of HapMap Project catalogs patterns between nearby	Structural variants are implicated in numerous diseases and genomes. Here we describe an integrated set of eight structure in 26 human populations. Analysing this set, we identify population structuration and describe naturally occurring genome wide association studies and exhibit enrichmen uncover appreciable levels of structural variant complexit of reparted rearrangement and compast anterutarial variant in genome wide association studies and exhibit enrichmen uncover appreciable levels of structural variant complexit of reparted rearrangement and compast structural variant in provide the structural variant of the structural variant of the structural variant in provide the structural variant of the structural variant of the structural variant in provide the structural variant of the stru	I make up the majority of varying nucleotides among human ra' variant classes comprising join halanced i and implanced munerous gene-interesting structural variants exhibiting homozynas gene knockoust that suggest the dispersibility and the structural structural structural structural to reary structural quantitative trait local challenges at a different scales, including genic local subject to clusters et with multiple breakpoints likely to have fromed from a studies into structural variant demography. Inuccional tuto studies into structural variant demography. Inuccional
catalogue (version 1 'lan d'antique d'antiq	discussibletum (LD), ser These in or curs have genotypes at several har the koosohed of LD at the koosohed of LD at tested for association's tested for association's tested for association's minularly bene tested for Despite these accesses the constraint of the second Desc a regime has been study of all genetic-varian study of all genetic-varian study of all genetic-varian tested for association's tested for the second of the second for the variantic, because the definition of the second for the second tested for the second for the variantic of the second for the second for the second for the variantic of the second for the second for the second for the variantic of the second for the second for the second for the variantic of the second for the second for the second for the second for the second for the second for the second for the second for the second for	Structural variants (SV), including delicion, instruction, deplications and inversion, account for most varying hose pairs (10) among individual human genome, ¹ . Numerous studies have implicate to compare the shall be interested and the structural studies (Compare the shall be interested and the structural studies) regarative shall be interested and the structural studies and the structural structural studies of these variant remains and genome-wide association studies (CWAS) ¹⁰ . Despite recent methods- logical and theorized structural structural structural structural structural structural structural structural structural structural begin and method structural structural structural structural prome-wide association studies (CWAS) ¹⁰ . Despite methods have explored by dases have to far been lacking. Eather SV amproves limited to a small number of samples ¹¹ . More recently, host eval DAS Proyett ⁴⁷ enables us to context step of Vag, genotyped caroos popu- lations, with enhanced airs and breakpoint resolutions ¹⁰ . Provide Tool valual and use trapped version they funct the observations in spite of the reference of other SV cases to human genetics ⁴⁰ . The objective of the Structural Automan, barbon Garon Struc- tural structural structural structural structural structures for reference of other SV cases to human genetics ⁴⁰ .	algorithmsUWA ¹⁷ and mick 247 ⁻¹ and performed 5V discre- and genotyping using an essensible of mice different algorithm (Extended Data Fig. 1 and Supplementary Nied). We applied sever and an exterior of the second second second second second second distribution of the second second second second second second distribution of the second second second second second additional 68% inversions and 3123 small (<1kp) deletions, con- pared to the SV start reades with the 1000 Genome Project marks additional 69% inversions and 3123 small (<1kp) deletions, con- pared to the SV start reades with the 1000 Genome Project marks paper 5% ytat ⁻¹ (see Supplementary Table 2). We merged individu- diate to construct or miller disease (Table 1), comparing 223 baladie dentimes, 6,315 baladie deplecations, 2,527 miCVN (mit dial inversions (NLVR), and 16,481 microtions, 7,547 miCVN (ME), including 12748, 3,048 mills displacations, 2,597 miCVN (mit dial inversions (NLVR), and 16,481 microtions of the 5% oblight displacations, 6,607 with the second second second second second ymathematical microtions and XIII classes to = 9486 for baladie displacitations, 6607 NV, second second with marks to the second second second second second second second second second sec

- Catalog of SVs for filtering and variant prioritization
- Expand our understanding of variation in difficult to analyze regions of the genome
- Evaluate variation in regions associated with interesting signals in existing data

LRS data is analyzed using both alignment-based and assembly-based approaches

Data available at https://s3.amazonaws.com/1000g-ont/index.html

Kolmogorov et al., 2023; 1000 Genomes ONT Sequencing Consortium

The first 100 samples have read N50s >40 kb with >30x coverage

Data available at https://s3.amazonaws.com/1000g-ont/index.html

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium

The distribution of insertions and deletions in the first 100 samples follows expected patterns

Data available at https://s3.amazonaws.com/1000g-ont/index.html

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium

The number of novel SVs increase as more individuals are added

Data available at https://s3.amazonaws.com/1000g-ont/index.html

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium

Applications for SV filtering and prioritization using this data are under development

J (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium

J. Gus Gustafson

Applications for SV filtering and prioritization using this data are under development

Name	Chromosome	Start_Position	End_Position	Gene_Name	SV_Type	SV_Length	Start_Variance	End_Variance	MAF
	chr1	16680842	146052340	AGL	INV	129371498	-0.03	19701043866546336.00	0.25480800
	chr1	99856307	99856343	AGL	DEL	-36	2.00	0.00	0.07211540
	chr1	99877171	99877487	AGL	INS	316	0.00	0.00	0.00480769
	chr1	99890379	99890609	AGL	INS	230	0.00	0.00	0.00961538
								320 314 336 338 339 319 316 339 316 336 336 336 336 336 336 336 336 336	

J (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium

https://s3.amazonaws.com/1000g-ont/index.html

Data from the 1000G cohort can be used to establish allele frequencies for challenging changes

Acknowledgements

Danny Miller Zach Anderson Miranda Galey Sophia Gibson Joy Goffena J. (Gus) Gustafson Angie Miller Maisha Sinha Sophie Storz Sydney Ward

UNIVERSITY of WASHINGTON

Evan Eichler Kendra Hoekzema Jordan Knuth William Harvey Brian Shirts

Oxford Nanopore Androo Markham Dan Fordham

Sanford Children's Katie Burns Laura Davis-Keppen

Northeastern University Miten Jain

University of Nottingham Matt Loose

New York Genome Center Michael Zody Andre Corvelo Adrienne Helland Atit Raval

> Cold Spring Harbor Laboratories Richard McCombie Cat Reeves Sarah Goodwin

1000GONT Sequencing Consortium

Everyone contributing to the 1000G ONT Sequencing Consortium

