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Clinical genetic testing often occurs in a stepwise 
fashion, involving multiple tests and clinic visits

Frésard et al. 2018 and Clark et al. 2018; Gibson et al., Submitted



New technologies, such as long-read sequencing will 
increase the diagnostic rate

Frésard et al. 2018 and Clark et al. 2018; Gibson et al., Submitted



A traditional genetic workup is diagnostic 
in less than 50% of cases

Frésard et al. 2018 and Clark et al. 2018; Gibson et al., Submitted

Incomplete gene-phenotype relationships
• We do not know the function of all genes

Variants that are difficult to detect or interpret 
• Many genes are difficult to sequence

• Structural variants can be difficult to identify

• Predicting the impact of a variant is difficult



Short-read sequencing detects less than half the SVs 
seen by long-read sequencing

Adapted from Zhao et al. 2020



Long-read sequencing technologies

Convert signal into 
nucleotides

Convert signal into 
nucleotides

Measure change in current Measure change in current



LRS provides detailed information about SVs

LaCroix et al. 2019, Miller et al. 2021
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LRS can be used to identify variants in 
complex regions of the genome

• Newborn with respiratory failure at birth requiring ECMO

• Duo exome sequencing revealed a likely pathogenic 2-bp deletion in 
HYDIN

Unpublished data

CASE 1



HYDIN is a 400-kb gene containing a 
380-kb segmental duplication

Segmental duplication

Unpublished data

2-bp deletion

CASE 1



Short reads do not align well within HYDIN

Unpublished data

Segmental duplication Low coverage
Short-read sequencing 

of NA12878

CASE 1



LRS gives even coverage across HYDIN and 
identifies SNVs difficult to detect with short reads
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Unpublished data; R9.4 flow cell, superior model, all variants shown

CASE 1
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LRS can identify variants missed by prior 
clinical testing — these are often SVs
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Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

Heterozygous for known maternally inherited stop in FGA (fibrinogen alpha chain)

CASE 2



LRS can identify variants missed by prior 
clinical testing — these are often SVs

Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

Heterozygous for known maternally inherited stop in FGA (fibrinogen alpha chain)
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LRS can detect variants in regions of the 
genome difficult to analyze with short reads

Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

CASE 3

Overlapping segmental duplications



LRS can detect variants in regions of the 
genome difficult to analyze with short reads

Unpublished data; R9.4.1 flow cell, superior model; indels smaller than 3 bp hidden

CASE 3

Overlapping segmental duplications

HP
 1

HP
 2



An individual unsolved after clinical testing

• 8-year-old male with suspected glycogen storage disease
– Panel identified a single pathogenic variant in AGL, but no 2nd variant

• Family returns for re-evaluation and additional testing
– SNP array: negative
– Exon-level array: negative

• Research-based short-read WGS
– SV identified in AGL, thought to be a translocation
– Clinical optical genome mapping: negative

• Research long-read sequencing

CASE 4



An individual unsolved after clinical testing
CASE 4

Alu insertion likely to 
disrupt splicing
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Existing databases cannot be used to determine the 
allele frequency of these variants
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Case 1: Ciliopathy Case 3: Fanconi anemia Case 4: Glycogen Storage Disease



The 1000 Genomes Project characterized patterns of 
human genetic variation



LRS of 1000 Genomes Project samples to characterize 
previously inaccessible patterns of human variation

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium



• Catalog of SVs for filtering and 
variant prioritization

• Expand our understanding of 
variation in difficult to analyze 
regions of the genome

• Evaluate variation in regions 
associated with interesting signals 
in existing data

LRS of 1000 Genomes Project samples to characterize 
previously inaccessible patterns of human variation



LRS data is analyzed using both alignment-based and 
assembly-based approaches 

• Identify common SVs
• Identify variants in 

difficult-to-map regions

Alignment

Assembly Variant 
calling

Variant 
calling

Sequenced 
reads

Kolmogorov et al., 2023; 1000 Genomes ONT Sequencing ConsortiumData available at https://s3.amazonaws.com/1000g-ont/index.html



The first 100 samples have read N50s >40 kb 
with >30x coverage 

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing ConsortiumData available at https://s3.amazonaws.com/1000g-ont/index.html



The distribution of insertions and deletions in the first 100 
samples follows expected patterns

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing ConsortiumData available at https://s3.amazonaws.com/1000g-ont/index.html



The number of novel SVs increase as more 
individuals are added

J. (Gus) Gustafson; 1000 Genomes ONT Sequencing ConsortiumData available at https://s3.amazonaws.com/1000g-ont/index.html



Applications for SV filtering and prioritization using this 
data are under development

Sophia GibsonSophia Gibson; 1000 Genomes ONT Sequencing Consortium



Data from 100 individuals can be used for 
SV filtering and prioritization

J (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium



Data from 100 individuals can be used for 
SV filtering and prioritization

34,720 29,858

SVs called by 
Sniffles2

SVs after filtering 
for FILTER=PASS 

and full CHR

J. Gus Gustafson



Data from 100 individuals can be used for 
SV filtering and prioritization

34,720 29,858 1,037

SVs called by 
Sniffles2

SVs after filtering 
for FILTER=PASS 

and full CHR

SVs unique to 
proband (compared 
to 100 samples from 
the 1000G Project)

J. Gus Gustafson



Data from 100 individuals can be used for 
SV filtering and prioritization

34,720 29,858 1,037 353

SVs called by 
Sniffles2

SVs after filtering 
for FILTER=PASS 

and full CHR

SVs unique to 
proband (compared 
to 100 samples from 
the 1000G Project)

Unique SVs that 
intersect with 

annotated genes

J. Gus Gustafson



Data from 100 individuals can be used for 
SV filtering and prioritization

J. Gus Gustafson

34,720 29,858 1,037 353 1

SVs called by 
Sniffles2

SVs after filtering 
for FILTER=PASS 

and full CHR

SVs unique to 
proband (compared 
to 100 samples from 
the 1000G Project)

Unique SVs that 
intersect with 

annotated genes
Causal 

SV



Applications for SV filtering and prioritization using this 
data are under development

J (Gus) Gustafson; 1000 Genomes ONT Sequencing Consortium



• https://s3.amazonaws.com/1000g-ont/index.html

https://s3.amazonaws.com/1000g-ont/index.html


Data from the 1000G cohort can be used to establish 
allele frequencies for challenging changes
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Case 1: Ciliopathy Case 3: Fanconi anemia Case 4: Glycogen Storage Disease
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